f07 — Linear Equations (LAPACK) f07usc

1

NAG C Library Function Document

nag_ztptrs (f07usc)

Purpose

nag_ztptrs (f07usc) solves a complex triangular system of linear equations with multiple right-hand sides,
AX =B, ATX=Bor A"X =B, using packed storage.

2

Specification

void nag_ztptrs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,

3

Nag_DiagType diag, Integer n, Integer nrhs, const Complex ap[], Complex b[],
Integer pdb, NagError xfail)

Description

nag_ztptrs (f07usc) solves a complex triangular system of linear equations AX = B, A’X = B or
AlxX =B using packed storage.

4

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252—1265

5

1:

Parameters

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_ RowMajor or Nag_ColMajor.

uplo — Nag_UploType Input
On entry: indicates whether A is upper or lower triangular as follows:

if uplo = Nag Upper, A is upper triangular;

if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

trans — Nag TransType Input
On entry: indicates the form of the equations as follows:

if trans = Nag NoTrans, the equations are of the form AX = B;

if trans = Nag_Trans, the equations are of the form A7 X = B;

if trans = Nag_ConjTrans, the equations are of the form AX = B.

Constraint: trans = Nag NoTrans, Nag_Trans or Nag_ConjTrans.

[NP3645/7] f07usc.1

f07usc NAG C Library Manual

diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag_NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint:. diag = Nag_NonUnitDiag or Nag_UnitDiag.

n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

ap[dim| — const Complex Input
Note: the dimension, dim, of the array ap must be at least max(l,n x (n+1)/2).

On entry: the n by n triangular matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +i — 1], for i < j;

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 41 — 1], for i > j;

if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ap[(2n — i) x (i —1)/2 4 j — 1], for i < j;
if order = Nag RowMajor and uplo = Nag Lower,
a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.
b[dim] — Complex Input/Output

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f07usc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07usc

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdb = (value).
Constraint: pdb > 0.
NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_SINGULAR

The matrix A is singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution z is the exact solution of a perturbed system of
equations (A + E)x = b, where

|E| < c(n)elAl,
c(n) is a modest linear function of n, and € is the machine precision.

If z is the true solution, then the computed solution x satisfies a forward error bound of the form
———= < ¢(n)cond(A,z)e, provided c(n)cond(A,z)e <1,

where cond(4, z) = [[[A7] | 2[|o/]| -

Note that cond(A,z) < cond(A) = |||A™"||A|||l. < kao(A); cond(A,z) can be much smaller than

cond(A) and it is also possible for cond(A™), which is the same as cond(A”), to be much larger (or
smaller) than cond(A).

Forward and backward error bounds can be computed by calling nag_ztprfs (f07uvc), and an estimate for
Koo (A) can be obtained by calling nag_ztpcon (f07uuc) with norm = Nag_InfNorm.

[NP3645/7] f07usc.3

f07usc NAG C Library Manual

8 Further Comments

The total number of real floating-point operations is approximately 4n’r.

The real analogue of this function is nag_dtptrs (f07uec).

9 Example

To solve the system of equations AX = B, where

4.78 + 4.56i 0.00 + 0.00¢ 0.00 4+ 0.00¢z 0.00 4 0.00¢
2.00 - 0.30: —4.11+ 1.25¢ 0.00 4+ 0.00¢z 0.00 4 0.00¢
289 —134¢ 236 —-4.25 4.15+0.80¢ 0.004 0.00¢
—-1.89 +1.15¢ 0.04 —-3.69¢ —0.02+0.46: 0.33 —0.267

A:

and

—14.78 —32.36¢ —18.02 + 28.464

B— 298 — 2.14¢ 14.22 + 15.424
| —20.96 + 17.06¢ 5.62+35.89% |’

954+ 991 —-16.46— 1.73¢

using packed storage for A.

9.1 Program Text

/* nag_ztptrs (f07usc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer ap_len, i, j, n, nrhs, pdb;
Integer exit_status=0;
Nag_UploType uplo_enum;

NagError fail;
Nag_OrderType order;
/* Arrays */

char uplo[2];
Complex *ap=0, *b=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) aplJd*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A _LOWER(I,J) apl[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) apl[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07usc Example Program Results\n\n");

/* Skip heading in data file #*/

f07usc.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

Vscanf ("%*["\n] ");
Vscanf ("%$1d%1d%*["\n] ", &n, &nrhs);
ap_len = n * (n + 1)/2;

#ifdef NAG_COLUMN_MAJOR

pdb = n;
#else

pdb = nrhs;
#endif

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, Complex)) ||
(b = NAG_ALLOC(n * nrhs, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A and B from data file =*/
Vscanf (" ' %1s ’'%*[*"\n] ", uplo);

if (*(unsigned char =*)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1)
{
for (3 = i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A_UPPER(i,]j).re, &A_UPPER(i,])
b
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++7)
Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re, &A_LOWER(i,j)
b
Vscanf ("s*[*\n] ");
}
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,7j).im);
}
Vscanf ("$*[*\n] ");

/* Compute solution =*/
fO07usc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7usc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
b, pdb, Nag_BracketForm,"%7.4f", "Solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, O,
0, &fail);

if (fail.code != NE_NOERROR)

[NP3645/7]

.im) ;

.im) ;

f07usc

f07usc.5

f07usc NAG C Library Manual

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
END:

if (ap) NAG_FREE (ap);
if (b) NAG_FREE(b);

return exit_status;

}

9.2 Program Data

fO07usc Example Program Data
4 2 :Values of N and NRHS

'L’ :Value of UPLO
(4.78, 4.56)
(2.00,-0.30) (-4. 1.25)
(1 2.89,-1.34) (2. 36 -4.25) (4.15, 0.80)
(-1.89, 1.15) (0.04,-3.69) (-0.02, 0.46) (0.33,-0.206) :End of matrix A
(-14.78,-32.36) (-18.02, 28.406)
(2.98, -2.14) (14.22, 15.42)
(-20.96, 17.06) (5.62, 35.89)
(9.54, 9.91) (-16.46, -1.73) :End of matrix B

9.3 Program Results

fO7usc Example Program Results
Solution(s)

1
-5.0000,-2.0000)
-3.0000,-1.0000)
2.0000, 1.0000)
4.0000, 3.0000)

2
1.0000, 5.0000)
-2.0000,-2.0000)
3.0000, 4.0000)
4. OOOO,—3.0000)

fO07usc.6 (last) [NP3645/7]

	f07usc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	nrhs
	ap
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

